Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

Name:_

The items you must absolutely know for the exam:

- (a) Showing sets are bijective, by construction or other means, to show a set is countable or uncountable
- (b) What algebraic and transcendental numbers are
- (c) What it means for numbers to be relatively prime
- (d) What the gcd is of numbers and that it is an integer combination
- (e) Fundamental Theorem of Arithmetic and Euclid's Lemma

1. It is known that the interval (0, 1) is uncountable. Prove that the interval $(1, \infty)$ is uncountable by explicitly constructing a bijection from (0, 1) to $(1, \infty)$. Be sure to prove the map you construct is really a bijection.

2. Show that \mathbb{Z} is countable by constructing an explicit map from \mathbb{N} to \mathbb{Z} and showing it's a bijection.

3. Let $\alpha \in \mathbb{R}$. Let p(x) be a polynomial with integer coefficients such that α is a transcendental number. Prove that $p(\alpha)$ must also be a transcendental number.

4. Let $\alpha \in \mathbb{R}$ be an algebraic number. Prove that α^{-1} can be expressed in terms solely consisting of sums with rational coefficients of powers of α .

5. Prove that 5n + 3 and 7n + 4 are relatively prime for all $n \in \mathbb{N}$.

6. Let *m* and *n* be integers that are relatively prime. Prove for any $r \in \mathbb{Z}$, there exists $x, y \in \mathbb{Z}$ such that r = mx + ny.

7. Let d = gcd(a, b) where $a, b \in \mathbb{N}$. If a = da' and b = db', show that gcd(a', b') = 1.

8. Let $d = \gcd(a, b)$ where $a, b \in \mathbb{N}$. Prove that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.

9. We showed \mathbb{R} is uncountable. Prove the interval (0,1) is uncountable by constucting a map from (0,1) to \mathbb{R} and demonstrating the map is a bijection.